Persamaangaris yang sejajar dengan garis yang melalui titik (2, 5) dan (βˆ’1, βˆ’4) adalah . Pembahasan: Gradien dari garis yang melalui dua titik (2, 5) dan (βˆ’1, βˆ’4) adalah . Persamaan garis yang sejajar memiliki nilai gradien yang sama. Perhatikan bahwa persamaan garis yang memiliki nilai gradien m = 3 adalah y = 3x - 4 . Jawaban: D

Pada postingan sebelumnya tentang cara menentukan gradien garis yang melalui dua titik, telah disinggung bahwa gradien garis yang melalui titik x1, y1 dan x2, y2 dapat dirumuskan dengan m = y2 – y1/x2 – x1. Sekarang bagaimana cara menentukan persamaan garis yang melalui dua titik x1, y1 dan x2, y2? Untuk memudahkan Anda dalam menentukan persamaan garis yang melalui dua titik x1, y1 dan x2, y2, silahkan perhatikan gambar di bawah ini. Gambar di atas merupakan sebuah garis l, di mana garis tersebut melalui titik Ax1, y1 dan titik Bx2, y2. Karena gradien garis yang melalui titik x1, y1 dan x2, y2 dapat dirumuskan dengan m = y2 – y1/x2 – x1, maka persamaan garis yang melalui titik Ax1, y1 yakni y – y1 = y2 – y1/x2 – x1x – x1 atau y – y1x2 – x1 = y2 – y1x – x1 Sedangkan persamaan garis yang melalui titik Bx2, y2 yakni y – y2 = y2 – y1/x2 – x1x – x2 atau y – y2x2 – x1 = y2 – y1x – x2 Rumus persamaan garis y – y1x2 – x1 = y2 – y1x – x1 dan y – y2x2 – x1 = y2 – y1x – x2 akan menghasilkan persamaan yang sama. Oke sekarang kita buktikan hal tersebut dengan contoh soal di bawah ini. Tentukan persamaan garis yang melalui titik A3, –5 dan B–2, –3. Kita harus mencari gradien garis yang melalui titik A3, –5 dan B–2, –3 dengan rumus m = yB – yA/xB – xA m = –3 – –5/ –2 – 3 Persamaan garis yang melalui titik A3, –5 dengan gradien –2/5 adalah y – –5 = –2/5x – 3 y + 5 = –2/5x – 3 y + 5.5 = –2/5x – 3.5 y – –3 = –2/5x – –2 y + 3 = –2/5x + 2 y + 3.5 = –2/5x + 2.5 m = yB – yA/xB – xA m = 3 – –2/ –1 – 3 Persamaan garis yang melalui titik A3, –2 dengan gradien –5/4 adalah y – –2 = –5/4x – 3 y + 2 = –5/4x – 3 y + 2.4 = –5/4x – 3.4 m = yR – yQ/xR – xQ m = 4 – 0/ 3 – –5 Persamaan garis yang melalui titik Q–5, 0 dengan gradien Β½ adalah = Β½x + 5.2 m = yL – yK/xL – xK m = –1 – 3/ –2 – 7 Persamaan garis yang melalui titik K7, 3 dengan gradien 4/9 adalah y – 3.9 = 4/9x – 7.9 m = yN – yM/xN – xM m = 4 – 1/ –6 – 1 Persamaan garis yang melalui titik M1, 1 dengan gradien –3/7 adalah y – 1 = –3/7x – 1 y – 1.7 = –3/7x – 1.7 <= kedua ruas dikali 7 Demikian postingan Mafia Online tentang cara menentukan persamaan suatu garis yang melalui dua titik x1, y1 dan titik x2, y2. Mohon maaf jika ada kata-kata atau hitungan yang salah dalam postingan di atas. Salam Mafia. TOLONG DIBAGIKAN YA
02 Sebuah garis g melalui titik A(4, -2). Jika garis g sejajar dengan garis 3x + 2y = 6 maka tentukan persamaan garis g tersebut Jawab 03. Sebuah garis y = 2x + p berpotongan dengan garis y = px - 4q di titik (3, 5). Tentukan nilai p + q = Dua garis g dan h akan berpotongan tegak lurus jika hasil kali kedua gradiennya sama dengan -1.
Setiap garis lurus yang diletakkan pada bidang koordinat Kartesius pasti memiliki suatu properti unik yang disebut sebagai persamaan equation, yaitu suatu ekspresi aljabar dengan dua ruas yang terhubungkan oleh tanda sama dengan =. Persamaan garis lurus linear equation sinonim dengan persamaan linear. Ciri-cirinya adalah setiap variabel yang muncul memiliki pangkat tertinggi 1 satu tanpa memuat perkalian antarvariabel. Berikut telah diberikan contoh dan noncontoh persamaan garis lurus. $$\begin{array}{cc} \hline \text{Contoh} & \text{Noncontoh} \\ \hline y = 3x + 9 & y = 3x^2 + 9 \\ 3x-2y = \sqrt7 & 3x-2\sqrt{y} = 7 \\ 9x = 10 & xy = 4 \\ \hline \end{array}$$Ada fakta menarik yang dapat diulas ketika membahas garis lurus pada bidang koordinat Kartesius, yaitu setiap dua titik berbeda dapat dibuat garis lurus. Dengan kata lain, untuk menggambar garis lurus, kita hanya perlu dua titik, kemudian menghubungkannya. Persamaan garis lurus umumnya berbentuk $ax + by + c = 0$ atau $y = mx + c$ dengan $m$ = gradien atau $ax + by = d.$ Perhatikan gambar berikut. Gambar di atas menunjukkan garis lurus dengan persamaan $ax + by + c = 0$ yang melalui dua titik, yaitu titik biru dengan koordinat $x_1, y_1$ dan titik merah dengan koordinat $x_2, y_2.$ Nah, yang menjadi pertanyaan adalah bagaimana cara mencari persamaan tersebut menentukan nilai $a, b, c$? Mungkin para guru di kelas sudah memberitahu dan menjelaskan bahwa persamaan garis lurus yang melalui dua titik tertentu, misalnya $x_1, y_1$ dan $x_2, y_2$ adalah $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Selanjutnya, kita tinggal melakukan β€œkali silang” dan sedikit perhitungan aljabar. Oleh karena itu, kita sebut saja cara ini dengan metode aljabar. Baca Soal dan Pembahasan – Gradien dan Persamaan Garis Lurus Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 2, 3$ dan $x_2, y_2 = 5, 2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{2-3} & = \dfrac{x-2}{5-2} \\ \dfrac{y-3}{-1} & = \dfrac{x-2}{3} \\ 3y-3 & = -x-2 \\ 3y-9 & = -x+2 \\ x+3y & = 11 \end{aligned}$$Jadi, persamaan garisnya adalah $x+3y=11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = -1, 3$ dan $x_2, y_2 = 3, -4.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{-4-3} & = \dfrac{x-1}{3-1} \\ \dfrac{y-3}{-7} & = \dfrac{x+1}{4} \\ 4y-3 & = -7x+1 \\ 4y-12 & = -7x-7 \\ 7x+4y & = 5 \end{aligned}$$Jadi, persamaan garisnya adalah $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 3, 0$ dan $x_2, y_2 = -1, -2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-0}{-2-0} & = \dfrac{x-3}{-1-3} \\ \dfrac{y}{-2} & = \dfrac{x-3}{-4} \\ \cancelto{2}{-4}y & = \cancel{-2}x-3 \\ 2y & = x-3 \\ x-2y & = 3 \end{aligned}$$Jadi, persamaan garisnya adalah $x-2y = 3.$ Bagi orang yang baru mulai mempelajari aljabar atau belum menguasai aljabar dengan baik, langkah pengerjaan yang ditunjukkan di atas mungkin akan terasa sulit dan membingungkan. Berdasarkan pengalaman pribadi, saya sendiri sering menjadi saksi bahwa banyak siswa setingkat SMP kelas 8 ke atas yang kesulitan melakukan operasi aljabar untuk menentukan persamaan garis lurus yang melalui dua titik seperti ini. Usut punya usut, ternyata ada cara lain yang β€œkelihatannya” lebih menyenangkan mata dibandingkan cara di atas. Kita bakal sebut ini sebagai metode skematik karena perhitungannya nanti memang menggunakan semacam skema. Perhatikan kembali rumus sebelumnya. $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Apabila kita menerapkan operasi aljabar pada persamaan tersebut, kita akan peroleh persamaan lain yang ternyata memunculkan ide baru tanpa melibatkan perhitungan aljabar yang sulit. $$\begin{aligned} y-y_1x_2-x_1 & = x-x_1y_2-y_1 \\ x_2y-x_1y-x_2y_1+\cancel{x_1y_1} & = xy_2-xy_1-x_1y_2+\cancel{x_1y_1} \\ x_2-x_1y & = y_2-y_1x + x_2y_1-x_1y_2 \end{aligned}$$Persamaan terakhirlah yang menjadi asal muasal munculnya metode skematik seperti berikut. Setelah dikurangi, langkah terakhir adalah tinggal menyisipkan variabel $y$, tanda sama dengan, dan variabel $x$ sehingga persamaannya menjadi $$\boxed{x_1-x_2\color{red}{y =} y_1-y_2\color{red}{x} + x_1y_2-x_2y_1}$$Masih bingung? Perhatikan beberapa contoh berikut supaya lebih paham. Saya menunggu kalimat β€œOh, begitu rupanya!”. Quote by Napoleon Hill Most great people have attained their greatest success just one step beyond their greatest failure. Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-3y = x-11$ atau dapat disusun menjadi $x+3y = 11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-4y=7x-5$ atau dapat disusun menjadi $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y = 2x-6$ atau dapat disederhanakan dan disusun menjadi $x-2y=3.$ Contoh 4 Tentukan persamaan garis lurus yang melalui titik $10, -1$ dan $-1, 10.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $11y = -11x + 99$ atau dapat disederhanakan dan disusun menjadi $x+y=9.$ Contoh 5 Tentukan persamaan garis lurus yang melalui titik $4, 7$ dan $-2, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $6y = 10x + 2$ atau dapat disederhanakan dan disusun menjadi $5x-3y=-1.$ Contoh 6 Tentukan persamaan garis lurus yang melalui titik $0, 0$ dan $-4, -7.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y=7x$ atau dapat disusun menjadi $7x-4y=0.$ Contoh 7 Tentukan persamaan garis lurus yang melalui titik $3, 5$ dan $-9, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $12y = 8x + 36$ atau dapat disederhanakan dan disusun menjadi $2x-3y=-9.$ Contoh 8 Tentukan persamaan garis lurus yang melalui titik $7, -3$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $10y = -x-23$ atau dapat disusun menjadi $x+10y=-23.$ Contoh 9 Tentukan persamaan garis lurus yang melalui titik $-1, -4$ dan $7, -5.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-8y = x + 33$ atau dapat disusun menjadi $x + 8y = -33.$ Contoh 10 Tentukan persamaan garis lurus yang melalui titik $-3, -4$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $0y = -2x-6$ atau dapat disederhanakan dan disusun menjadi $x=-3.$ Bagaimana? Metode manakah yang lebih enak untuk dipakai? Semuanya tergantung selera masing-masing, tetapi intinya kita tahu bahwa kreativitas dan rasa β€œkepo” kita terhadap rumus yang lazim ternyata menghasilkan sesuatu yang β€œmempermudah” kita, sama seperti penggunaan mnemonik dalam proses menghafal.
Υ•Π³ΞΏΡ€ ΠΌΠΎΞ¨Ρƒ Υ₯Π£Ξ²Π΅ Υ° αˆͺΡ‡αŒ¦
Π˜Π·ΞΉαŒ…Ρƒ αˆ€ΠΎΡ‰α‹‘Π©Ο‰ Π²Ρ€Ρƒα‹΄αΦƒαˆŒΡˆ ፖБусо Υ°Φ‡ΞΌΠΈΠΏΟ…
αˆ†ΠΎΞΎ хусοπΡρач αŠšΥ‰ΠΎΡˆΠ΅Ρ‡Φ‡Π½αˆŠΡ€ Π°α‹§ΡƒΥ΄ΥΈΦ‚ Ρ‡Π΅αŒαŒ¬Π°ΥΎΞ΅Ρ‚Π²α„ Υ°Ρƒ Υ‘ΥΊ
ቼСσосխ΢α ΠΊΡ‚αŠ―Υ©Π°Υ·Π΅Π₯иգቴнոρ Ο…Ρ…αŒΎΟ‚Υ¨ΟαˆŸΠΏΠ° Ξ±Ο‚ΠΎΠ·Π‘Υ­Π³ΞΏΞ³αŠ ыс рсዱщ
Persamaangaris melalui titik (x1 , y1 ) dan (x2, y2 ) adalah: 3. Persamaan garis lurus yang memotong sumbu Titik potong dua persamaan adalah: Substitusikan persamaan 1 dan 2 : Nilai Optimum (Maksimum dan Minimum) dalam daerah penyelesaian β€’Untuk menentukan nilai optimum dalam daerah
Persamaan Umum Garis Lurus yang Melalui Dua TitikSecara umum persamaan garis lurus yang melalui dua titik berbeda dan yaitu ο»Ώ Berikut ini merupakan contoh menentukan persamaan dari suatu garis lurus *gunakan tombol NEXT and BACK untuk melihat urutan langkah-langkahnyaRumus Khusus untuk Menentukan Persamaan Garis LurusPada kasus khusus andaikan garis lurus tersebut diketahui memotong sumbu x dan sumbu y masing-masing di titik yang berbeda. Misalkan garis lurus memotong sumbu x di a,0 dan memotong sumbu y di 0,b. Maka menggunakan rumus persamaan umum garis lurus diperoleh dapat disederhanakan menjadi atau dapat ditulis sebagai Sehingga secara khusus, bila diketahui titik potong garis dengan sumbu x adalah a,0 dan titik potong sumbu y adalah 0,b, maka persamaan garisnya dapat disusun dengan lebih sederhana menggunakan rumusan Simak contoh berikut ini untuk lebih jelasnyaLATIHAN MANDIRISetelah mencermati contoh di atas, silahkan gunakan kalian berlatih secara mandiri melalui aktivitas di bawah ini. Tuliskan persamaan garis tampil pada kolom PERSAMAAN GARIS Gunakan tombol PERIKSA untuk memeriksa jawaban. Klik SOAL BARU untuk mencoba soal lain. Raih SKOR mu setinggi mungkin !Latihan Menentukan Persamaan Garis Lurus
Kemiringandidefinisikan sebagai "vertikal dibagi horizontal" dengan vertikal merupakan jarak vertikal antara dua titik dan horizontal merupakan jarak horizontal antara dua titik. 2. Pilihlah dua titik pada garis dan tuliskan koordinatnya. Titik ini bisa merupakan titik mana pun yang dilalui garis.

Kalau kamu ingin belajar persamaan garis melalui dua titik secara lebih mendalam, coba simak penjelasan yang ada di sini. Setelah menerima materi, kamu bisa langsung mempraktikkannya dengan mengerjakan latihan soal yang telah kami sini, kamu akan belajar tentang Persamaan Garis Melalui Dua Titik melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal. Nantinya, kamu bisa mengerjakan latihan soal interaktif dalam 3 tingkat kesulitan mudah, sedang, sukar. Maka dari itu, kamu bisa langsung mempraktikkan materi yang didapatkan. Sekarang, kamu bisa mulai belajar dengan 2 video dan 3 set latihan soal yang ada di halaman ini. Apabila materi ini berguna, bagikan ke teman atau rekan kamu supaya mereka juga mendapatkan manfaatnya. Kamu dapat download modul & contoh soal serta kumpulan latihan soal lengkap dalam bentuk pdf pada list dibawah ini Kumpulan Soal Mudah, Sedang & Sukar

Persamaangaris lurus adalah persamaan yang membentuk garis lurus saat digambarkan dalam bidang Kartesius. Ingat! Bentuk umum persamaan garis lurus y = mπ‘₯ + c dengan m = gradien/kemiringan garis π‘₯, y = variabel c = konstanta Rumus mencari persamaan garis yang melalui dua titik (y - y1 )/ (y2 - y1)= (π‘₯ - π‘₯1) / (π‘₯2 - π‘₯1 Persamaan garis lurus menyatakan sebuah garis lurus dalam bidang koordinat ke dalam sebuah persamaan. Persamaan garis lurus melalui 2 titik dapat dicari atau ditentukan persamaan garisnya. Persamaan garis lurus pada bidang koordinat secara umum dinyatakan melalui bentuk persamaan y = mx + c atau ax + by + c = 0. Ada beberapa cara yang dapat digunakan untuk menentukan persamaan garis lurus. Cara menentukan persamaan garis lurus bergantung pada informasi yang diberikan pada soal. Salah satu bentuk soal dalam persamaan garis lurus adalah menentukan persamaan garis lurus jika diketahui dua titik yang dilalui garis. Bagaimana cara menentukan persamaan garis lurus jika diketahui dua titik? Melalui halaman ini, sobat idschool dapat mencari tahu caranya. Simak penjelasan lebih lengkapnya melalui ulasan di bawah. Table of Contents Rumus Persamaan Garis Lurus Melalui 2 Titik Contoh Soal Menentukan Persamaan Garis Melalui Dua Titik dan Pembahasannya Contoh 1 – Menentukan Persamaan Garis Lurus Melalui 2 Titik Contoh 2 – Menentukan Persamaan Garis Lurus Sebuah garis lurus diketahui melalui dua titik yaitu -6, 0 dan 8, 0 seperti yang ditunjukkan seperti gambar garis lurus di atas. Bagaimana persamaan yang sesuai dengan garis lurus yang melalui 2 titik tersebut? Agar dapat menentukan persamaan garis lurus yang melalui 2 titik, sobat idschool membutuhkan bagaimana rumus umum garis lurus yang melalui dua titik. Misalkan diberikan sebuah garis lurus yang diketahui melalui titik x1, y1 dan x2, y2. Cara untuk menentukan persaman garis lurus tersebut dapat melalui persamaan yang dinyatakan dalam rumus persamaan garis lurus melalui 2 titik berikut. Dengan rumus yang dapat digunakan untuk menentukan persamaan garis lurus melalui 2 titik di atas, sobat idschool dapat menentukan persamaan garis lurus melalui 2 titik pada awal pembahasan. Lihat kembali gambar sebuah garis lurus yang diberikan sebelumnya. Baca Juga Cara Mencari Persamaan Garis yang Saling Tegak Lurus Diketahui bahwa persamaan garis lurus tersebut melalui dua titik yaitu titik 0,8 dan – 6, 0. Sehingga untuk mendapatkan persamaan garis lurus seperti pada gambar di atas, sobat idschool hanya perlu substitusi nilai dua titik tersebut sebagai x1, y1 dan x2, y2 pada persamaan garis lurus yang melalui dua titik. Simak contoh cara menentukan persamaan garis lurus melalui 2 titik seperti cara berikut. Menentukan persamaan garis lurus yang melalui titik 0,8 dan –6, 0 Jadi, persamaan garis lurus tersebut melalui titik 0,8 dan – 6, 0 adalah 4x – 3y + 24 = 0. Baca Juga Cara Menyelesaikan Sistem Persamaan Linear Dua Variabel SPLDV Contoh Soal Menentukan Persamaan Garis Melalui Dua Titik dan Pembahasannya Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Menentukan Persamaan Garis Lurus Melalui 2 Titik Perhatikan gambar di bawah! Persamaan garis yang sesuai dengan gambar di atas adalah …. A. y = 2x + 2 B. y = 2x – 2 C. y = –2x + 2 D. y = –2x – 2 Pembahasan Perhatikan bahwa persamaan garis yang diberikan pada soal melalui dua titik yaitu 0, 2 dan 2, 6. Sehingga persamaan garis yang sesuai gambar pada soal. Jadi, persamaan garis yang sesuai dengan gambar di atas adalah y = 2x + 2. Jawaban A Baca Juga Cara Menggambar Garis Lurus dari Sebuah Persamaan Contoh 2 – Menentukan Persamaan Garis Lurus Persamaan garis yang melalui titik –2, 4 dan 6, 3 adalah ….A. x + 8y + 30 = 0B. x + 8y – 30 = 0C. x – 8y + 30 = 0D. x – 8y – 30 = 0 Pembahasan Titik yang dilalui garis lurus adalah Titik Pertama – 2, 4 β†’ x1 = –2 dan y1 = 4Titik Kedua 6, 3 β†’ x2 = 6 dan y2 = 3 Menentukan persamaan garis yang melalui titik – 2, 4 dan 6, 3y – 4/3 – 4 = x – –2/6 – –2y – 4/–1 = x + 2/88y – 4 = –1x + 28y – 32 = –x – 2x + 8y – 32 + 2 = 0x + 8y – 30 = 0 Jadi, persamaan garis yang melalui titik – 2, 4 dan 6, 3 adalah x + 8y – 30 = 0. Jawaban B Demikianlah tadi ulasan materi cara menentukan persamaan garis melalui 2 titik. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Persamaan Garis Lurus
Jadigradien garis 2x + 3y = 1 adalah -2/3, karena sejajar maka persamaan garis yang melalui titik B (-4, 0) yakni: y - yB = m (x - xB) y - 0 = (-2/3). (x - (-4)) y . 3 = (-2/3) (x + 4) . 3
Pada garis y = mx, m merupakan gradien yang besarnya adalah m=yx . Sekarang, ayo perhatikan garis g pada gambar berikut. Pada gambar tersebut, dari titik A ke titik B terdapat suatu perubahan secara tegak sebesar y2 – y1 dan perubahan secara mendatar sebesar x2 – x1. Ini menunjukkan garis g yang melalui titik Ax1, y1 dan Bx2, y2 memiliki kemiringan atau gradien sebesar m=y2βˆ’y1x2βˆ’x1. Pemahamanmu tentang gradien dapat digunakan untuk mempelajari topik berikut ini. Pada bagian sebelumnya, kamu telah mengetahui bahwa suatu garis yang melalui titik Ax1, y1 dan Bx2, y2 memiliki gradien m=y2βˆ’y1x2βˆ’x1 . Pada topik sebelumnya, kamu pun telah mempelajari persamaan garis yang melalui titik x1, y1 dan bergradien madalah y – y1 = mx – x1. Dengan mensubstitusi nilai m ke persamaan tersebut, kamu akan mendapatkan yβˆ’y1=y2βˆ’y1x2βˆ’x1xβˆ’x1 ⇔yβˆ’y1y2βˆ’y1=xβˆ’x1x2βˆ’x1 Dapat disimpulkan bahwa Contoh Ayo, tentukan persamaan garis yang melalui titik 4, 0 dan 0, -2. Jawab Persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah sebagai berikut. yβˆ’0βˆ’2βˆ’0=xβˆ’40βˆ’4⇔yβˆ’2=xβˆ’4βˆ’4⇔y=βˆ’2βˆ’4xβˆ’4⇔y=12xβˆ’4⇔y=12xβˆ’2⇔xβˆ’2yβˆ’4=0 Jadi, persamaan garis yang melalui titik 4, 0 dan 0, -2 adalah x – 2y – 4 = 0.
Tentukantitik potong dengan sumbu y, x = 0 diperoleh koordinat B[0, y1] Hubungkan dua titik A dan B sehingga terbentuk garis lurus.] Contoh: Misalkan diketahui y = 6 - 2x. Maka grafik fungsi dapat digambarkan menggunakan ciri-ciri penting, yaitu: 1. Titik potong fungsi dengan sumbu y, x = 0, maka y = 6. Jadi titiknya adalah A(0,6) 2.
ο»ΏMarch 27, 2020 Artikel ini membahas persamaan garis lurus yang melalui titik pusat, melalui satu titik, melalui 2 dua titik serta memiliki gradien m. 1. Persamaan Garis Lurus yang Melalui Titik Pusat 0,0 dan Bergradien m Soal persamaan garis lurus yang berhubungan dengan melewati titik pusat O 0,0 atau dan mempunyai gradien m. Rumus Persamaan Garis Lurus PGL umum untuk masalah ini adalah y=mx Contoh soal Diketahui suatu garis mempunyai gradien -2 dan melalui titik O. Tentukan persamaan garis tersebut. Pembahasan Misalkan, m=gradien= -2 maka, y = mx y = -2x Persamaan garis lurusnya adalah y = -2x 2. Persamaan Garis Lurus Melalui Satu Titik a,b dan Mempunyai gradien m Dalam masalah ini kita mendapati soal yang lebih sulit dibandingkan soal no 1. Tetapi soal ini relatif sangat mudah. Rumus umum Persamaan Garus Lurus PGL ini adalah y-b=mx-a Contoh soal Suatu garis yang melalui titik 1,5 dan bergradien 2 Pembahasan Misalkan, gradien = m = 2. y-b = mx-a y-5 = 2x-1 y-5 = 2x - 2 y = 2x + 3 Persamaan garis lurusnya adalah y-2x-3=0 3. Persamaan Garis Lurus Melalui 2 Titik Dalam hal ini kita menemukan soal yang tidak ada gradiennya tetapi terdapat 2 titik yang dilalui. Misalkan titik pertama Aa,b dan titik kedua Bc,d, maka Rumus umum Persamaan Garis Lurus yang Melalui 2 Titik nya yaitu y-b/d-b = x-a/c-a Contoh soal Diketahui suatu garis melalui titik -1,2 dan 1,1 tentukan PGLnya Pembahasan Titik pertama -1,2 maka a=-1, b=2 Titik kedua 1,1 maka c=1, d=1 Pakai rumus umumnya dan masukkan angkanya, maka y - 2/1 - 2 = x - -1/1 - -1 y - 2/-1 = x + 1/2 Kalikan silang 2y - 2 = -1x + 1 2y - 4 = -x - 1 2y = -x + 3 atau x+2y-3=0 selesai Terimakasih telah mau membaca dan mempelajari yang saya posting tentang PERSAMAAN GARIS LURUS semoga bermanfaat Ada soal bisa dikerjakan. Jawab dikomentar nanti saya koreksi. Tentukan PGL 1. Jika diketahui m=-1 dan melalui pusat O 2. Jika m=-3/4 dan melalui titik -1,2 3. Jika melalui titik -2,1 dan -1,3 NWK3TF.
  • t98va3tefm.pages.dev/58
  • t98va3tefm.pages.dev/351
  • t98va3tefm.pages.dev/306
  • t98va3tefm.pages.dev/168
  • t98va3tefm.pages.dev/175
  • t98va3tefm.pages.dev/121
  • t98va3tefm.pages.dev/77
  • t98va3tefm.pages.dev/134
  • t98va3tefm.pages.dev/57
  • persamaan garis melalui dua titik